Construction of the Core of Pseudolaric Acid A and Mechanistic Studies on Intramolecular [4+3] Cycloaddition

Xun Tian JIANG, Li Gong OU, Dong Mei HAN, Yu Feng ZHAI, Dong Lu BAI*

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai, 200031

Abstracts: This paper describes the construction of hemiacetal **2**, the core of pseudolaric acid A *via* oxidative cleavage of acetonide **6** or **7** and enolization-hemiacetalization of aldehyde **8**. A plausible general mechanism for the intramolecular [4+3] cycloaddition of sulfoxide **4** to adduct **3** is suggested.

Keywords: Pseudolaric acid A, 5, 7- membered fused ring, hemiacetal, intramolecular [4+3] cycloaddition, mechanism.

Pseudolaric acid A (1), which exhibits antifungal activity, cytotoxicity against several tumor cell lines *in vitro*, as well as contraceptive effects in mice, is a diterpenoid compound isolated from *Pseudolarix Kaemferi*¹. The unusual structural feature in this molecule is a *trans* arrangement of the lactone and acetoxy group at the fused junction of 5, 7-fused ring skeleton bearing four contiguous stereogenic centers. The synthetic challenges posed by these structural elements in a rather compact molecule attract several groups to put their endeavors on the total synthesis of this molecule^{2,3}. In this paper, we would like to report the construction of a 5, 7-membered fused ring hemiacetal **2** with the right configurations of the carbons corresponding to those of pseudolaric acid A based on the oxidative cleavage of acetonide **6** or **7** and enolization-hemiacetalization of aldehyde **8**.

The retrosynthetic analysis of pseudolaric acid A (1) is illustrated in. The target molecule 1 might be obtained from 2, which was formed *via* manipulation at 5,7-

membered fused ring of acetonide 3. Compound 3 was obtained by intramolecular [4+3] cycloaddition of 4, which had been developed by our laboratory recently⁴.

Scheme 2

Reagents and conditions: a) (CF₃CO)₂O, 2, 6-lutidine, CH₂Cl₂, r.t., overnight, 50%; b) silica gel pretreated with Et₃N, 95%; c) Raney Ni (W-2), H₂, EtOH, r.t., 12h, 96%; d) H₃IO₅, EtOAc, r.t., 3h, 90%; e) Raney Ni (H-1), H₂, EtOH, r.t., 12h, 65%; f) H₃IO₅, EtOAc, r.t., 3h, 85%, g) CF₃COOH, CHCl₃, reflux, 12h, 33% (recovery of the starting material, 60%).

The synthesis of **2** is described in **Scheme 2**. Intramolecular [4+3] cycloaddition of sulfoxide **4** afforded cycloadduct **3** as a single isomer. The absolute configurations of the newly formed stereogenic centers in **3** were determined to be 3aR and 8aS based on 1D NOE difference spectrum and 2D NOESY experiments of its detrifluoroacetylated compound 5^4 . However the configuration of C-3 in **3** is opposite to that of pseudolaric acid A, the inversion of the configuration of C-3 to meet the stereochemistry of the skeleton of pseudolaric acid A was thus executed.

Detrifluoroacetylation of **3** was achieved by a short column of silica gel pretreated with triethylamine to give alcohol **5** in 95% yield⁵. Hydrogenation of double bond and desulfidation of **5** with Raney Ni (W-2)^{6a} in ethanol at room temperature afforded enol ether **6** in 96% yield. Oxidative cleavage of acetonide **6** with H₃IO₅ at room temperature concomitant with hydrolysis of enol ether obtained aldehyde **8** in 90% yield. Alternatively, reduction of double bond, desulfidation, hydrolysis of enol ether and detrifluoroacetylation of **3** were also accomplished in one pot using H₂ - Raney Ni (H-1)^{6b} in 95% ethanol at room temperature to afford acetonide **7** in 65% yield. Oxidative cleavage of acetonide **7** with H₃IO₅ in a similar manner as the preparation of **8** from **6** gave aldehyde **8** in 85% yield. Inversion of the C-3 configuration in aldehyde **8** was achieved *via* equilibration between aldehyde **8**-enol **9**-aldehyde **10** followed by intramolecular hemiacetalization of **10** in refluxing acidic CHCl₃ to give hemiacetal **2** in 33% yield.

Construction of the Core of Pseudolaric Acid A and Mechanistic Studies on Intramolecular [4+3] Cycloaddition

In order to investigate the reaction mechanism from **4** to **3**, the energy calculation of the product **3** and three other diastereomers **3a**, **3b**, and **3c** was carried out with Gaussian 94 program. The minimized energy of **3**, **3a**, **3b**, and **3c** are -1249.7, -1243.8, -1207.8 and -1205.0 kJ/mol, respectively. If the intramolecular [4+3] cycloaddition of **4** was of thermodynamic control, the ratio of four adducts should have been 1 (**3**) : 9.23 x 10^{-2} (**3a**) : 4.67 x 10^{-8} (**3b**) : 1.49 x 10^{-9} (**3c**). However, adducts **3a** was not detected.

In general, the [4+3] cycloaddition proceeds *via* two models, the concerted and step-wise one⁷. Both the transition states of the concerted model **11a** and step-wise model **11b** will lead to adduct **3**. It is obvious that transition state **11b** is energetically more favorable than **11a** because the acetonide and trifluoroacetate moieties are equatorial in **11b** while they are axial in **11a**. Thus **11b** rather than **11a** may be involved in the above mentioned [4+3] cycloaddition. We proposed that the intramolecular [4+3] cycloaddition of **4** is of kinetic control and *via* a step-wise transition state.

A plausible general mechanism for the transformation from **4** to **3** is suggested (**Scheme 3**). The Pummerer rearrangement accompanied by trifluoroacetylation of hydroxyl group of **4** yielded diester **12**. Detrifluoroacetoxylation of **12** to sulfonium ion **13** followed by delocalization led to oxallylic cation **14**. The oxocarbonium ion **15** was formed after intramolecular electrophilic addition of cation in **14** to the furan ring. Ring closure of **15** followed by deprotonation of **16** gave the intramolecular [4+3] cycloadduct **3**.

In summary, using diastereoselective intramolecular [4+3] cycloaddition of **4** as a key step to construct the 5,7-membered fused ring skeleton in compound **3** and further modification of this cycloadduct, the core of pseudolaric acid A, compound **2** was synthesized with three contiguous stereogenic centers corresponding to those of the target molecule. Further works on this project is underway.

115

Xun Tian JIANG et al.

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China.

References and Notes

- 1. D. J. Pan, Li, Z. L., C. Q. Hu, K. Chen, J. J. Chang, K. H. Lee, Planta Med., 1990, 56,383.
- 2. P. Chiu, B. Chen, K. F. Chen, *Tetrahedron Lett.*, **1998**, *39*, 9229.
- 3. B. C. Pan, H. Y. Chang, G. L. Cai, Y. S. Guo, Pure Appl. Chem., 1989, 61, 389.
- 4. a) Y. Hu, L. Ou, D. Bai, Tetrahedron Lett., **1999**, 40, 545. b) L. G. Ou, Y. H. Hu, G. Q. Song, L. Bai, Tetrahedron, **1999**, 55, 13999.
- 5. L. G. Ou, D. L. Bai, Org. Prep. Proc. Int. 1999, 31, 333.
- 6. a) R. Mozingo, "Org. Syn. Coll. Vol 3", John Wiley and Sons, New York, 1955, p.181.
- b) X. A. Dominguez, I.C. Lopez, L.R. Franco, J. Org. Chem., 1961, 13, 1625.
- 7. M. Harmata, Tetrahedron, **1997**, 53, 6235.
- 8. Selected data for compound **2**: ¹HNMR (300MHz, CDCl₃): δ 4.60 (m, 2H), 3.71 (m, 1H), 3.40 (dd, 1H, J=6.9, 15.9Hz), 2.30-1.60 (m, 9H). IR (film): 3300, 1705, 1462, 1327, 1045, 802 cm⁻¹. MS (m/z): 223(M⁺-1), 207 (100), 149, 122, 105. HREIMS for C₁₂H₁₆O₄: calcd: 224.1021; found: 224.1035.
- Selected data for compound 8: ¹HNMR (300MHz, CDCl₃): δ 9.75 (d, 1H, J = 2.2Hz), 4.65 (m, 1H), 3.74 (m, 1H), 3.50 (m, 1H), 2.80-3.00 (m, 2H), 1.85-2.50 (m, 7H), 1.50-1.70(m, 2H). ¹³CNMR (75MHz, CDCl₃): δ 213.9, 201.4, 94.4, 73.8, 64.4, 63.1, 54.3, 46.5, 5, 29.0, 28.6, 21.9. IR (film): 3446, 1701, 1466, 1350, 1059, 756 cm⁻¹MS (*m/z*): 224(M⁺), 223, 206, 196, 178, 91(100), 55. HREIMS for C₁₂H₁₆O₄: calcd: 224.1049; found: 224.1040.

Received 12 July, 2000